

- 1) Показать, что функция $y = x \operatorname{arcctg} x$ всюду возрастает.
- 2) Найти интервалы монотонности для функции $y = x(x-3)^2$. <u>Ответ</u>: функция возрастает на $(-\infty, 1]$ и на $[3, \infty)$; убывает на [1, 3].
- 3) Найти интервалы монотонности для функции $y=(x+2)^2 e^x$. Ответ: функция возрастает на $(-\infty, -4]$ и на $[-2, \infty)$; убывает на [-4, -2].
- 4) Найти интервалы монотонности для функции $y=(2x)^{-x}$. <u>Ответ</u>: функция возрастает на $(0, \frac{1}{2e}]$; убывает на $[\frac{1}{2e}, \infty)$.
- 5) Найти точки экстремумов для функций: а) $y = \frac{x^4}{4} + \frac{x^3}{3}$; б) $y = \ln(x-7) 2x$. Ответ: а) $x_1 = -1$ — т. лок. минимума; б) $x_1 = \frac{15}{2}$ — т. лок. максимума.
- 6) Найти наибольшее и наименьшее значение функции $f(x) = x^4 x^3$ на отрезке [0, 1]. Ответ: f(0) = f(1) = 0 — максимум функции; $f\left(\frac{3}{4}\right) = -\frac{27}{256}$ — минимум.
- 7) Положительное число a складывается с обратным к \sqrt{a} . При каком значении a полученная сумма будет минимальной?

$$\underline{\text{Ответ}} : \ S_{\min} = \frac{3}{\sqrt[3]{4}} \ \text{при} \ a = \frac{1}{\sqrt[3]{4}}.$$

8) Через заданную точку A(2,1) провести прямую так, чтобы площадь треугольника, образованного прямой с положительными полуосями координат оказалась наименьшей.

Ответ:
$$y = 2 - \frac{x}{2}$$
; $S_{\min} = 4 \text{ ед}^2$.

9)
 Фольклорная задача: установить без калькулятора, что больше
 e^π или π^e ?

$$\underline{\text{Ответ}}: e^{\pi} > \pi^e.$$

 $\underline{\text{Указание}}$: прологарифмировать оба числа, затем ввести подходящую функцию и исследовать ее на экстремум.

10) Привести пример дифференцируемой функции, возрастающей на всей оси, у которой есть бесконечное число критических точек, но нет ни одной точки экстремума.

1