

1) Построить с подробным исследованием графики функций:

a)
$$y = (x+1)^2 (x-2);$$
 6) $y = (3-x)\sqrt{x};$ b) $y = \ln(x^2 - 4x + 5).$

6)
$$y = (3 - x)\sqrt{x}$$
;

B)
$$y = \ln(x^2 - 4x + 5)$$

Указания:

а)
$$x_1 = -1$$
 — т. лок. макс., $x_2 = 1$ — т. лок. мин., $x_3 = 0$ — т. перегиба;

- б) $x_0 = 1$ т. максимума, функция всюду выпукла вверх;
- в) $x_0 = 2$ т. минимума, $x_1 = 1$ и $x_2 = 3$ т. перегиба.

2) Найти наибольшее и наименьшее значение функции $f(x) = x^3 - x^6$ на отрезке [0, 1].

Ответ:
$$f\left(\frac{1}{\sqrt[3]{2}}\right) = \frac{1}{4}$$
 — максимум функции; $f(0) = f(1) = 0$ — минимум.

3) Подобрать значение $a \in \mathbf{R}$ так, чтобы в точке $x_0 = 0$ касательная к графику функции $f(x) = x + e^{-ax}$ была перпендикулярна прямой y = x.

Otbet: a=2.

4) Записать формальный дифференциал для следующих функций:

a)
$$y_1 = \operatorname{tg} 2x$$
, $y_2 = \ln \left(x + \sqrt{x^2 + 9} \right)$, $y_3 = \frac{(x+1)^{50}}{50!}$;

6)
$$y_1 = u^3 + v^3$$
, $y_2 = e^{uv}$, $y_3 = \sqrt{\frac{u}{v}}$.

Здесь u, v — заданные функции от x.

Ответы:

a)
$$dy_1 = \frac{2dx}{\cos^2 2x}$$
, $dy_2 = \frac{dx}{\sqrt{x^2 + 9}}$, $dy_3 = \frac{(x+1)^{49} dx}{49!}$;

6)
$$dy_1 = 3u^2 du + 3v^2 dv$$
, $dy_2 = e^{uv}(u dv + v du)$, $dy_3 = \frac{v du - u dv}{2v \sqrt{uv}}$.