

796. Векторы \vec{a} и \vec{b} взаимно перпендикулярны, вектор \vec{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\vec{a}|=3, |\vec{b}|=5$ и $|\vec{c}|=8$, вычислить:

1) $(3\vec{a} - 2\vec{b})(\vec{b} + 3\vec{c})$; 2) $(\vec{a} + \vec{b} + \vec{c})^2$; 3) $(\vec{a} + 2\vec{b} - 3\vec{c})^2$.

- 800. Даны единичные векторы \vec{a} , \vec{b} и \vec{c} , удовлетворяющие условию $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Вычислить: $\vec{a} \, \vec{b} + \vec{b} \, \vec{c} + \vec{c} \, \vec{a}$.
- 801. Даны векторы \vec{a} , \vec{b} и \vec{c} , удовлетворяющие условию $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Зная, что $|\vec{a}| = 3$, $|\vec{b}| = 1$ и $|\vec{c}| = 4$, вычислить: $\vec{a} \, \vec{b} + \vec{b} \, \vec{c} + \vec{c} \, \vec{a}$.
- **759.** Вектор \vec{a} составляет с координатными осями Ox и Oy углы $\alpha=60^\circ, \quad \beta=120^\circ.$ Вычислить его координаты при условии, что $|\vec{a}|=2.$
- 808. Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{\pi}{6}$; зная, что $|\vec{a}| = \sqrt{3}, |\vec{b}| = 1$, вычислить угол α между векторами $\vec{p} = \vec{a} + \vec{b}$ и $\vec{q} = \vec{a} \vec{b}$.
- 812. Даны векторы $\vec{a} = \{4; -2; -4\}$ и $\vec{b} = \{6; -3; 2\}$. Вычислить: 1) $\vec{a} \, \vec{b};$ 2) $\sqrt{\vec{a}^{\,2}};$ 3) $\sqrt{\vec{b}^{\,2}};$ 4) $\left(2\vec{a} 3\vec{b}\right) \left(\vec{a} + 2\vec{b}\right);$ 5) $\left(\vec{a} + \vec{b}\right)^2;$ 6) $\left(\vec{a} \vec{b}\right)^2$.
- <u>818.</u> Определить, при каком значении α векторы $\vec{a} = \alpha \vec{i} 3\vec{j} + 2\vec{k}$ и $\vec{b} = \vec{i} + 2\vec{j} \alpha \vec{k}$ взаимно перпендикулярны.
- **824.** Найти вектор \vec{x} , коллинеарный вектору $\vec{a} = \{2; \ 1; \ -1\}$ и удовлетворяющий условию $\vec{x} \, \vec{a} = 3$.
- **832.** Вычислить проекцию вектора $\vec{a} = \{5; \ 2; \ 5\}$ на ось вектора $\vec{b} = \{2; \ -1; \ 2\}$.
- 834. Даны векторы $\vec{a}=\{1;\;-3;\;4\},\quad \vec{b}=\{3;\;-4;\;2\}$ и $\vec{c}=\{-1;\;1;\;4\}.$ Вычислить $\mathbf{np}_{\;\vec{b}+\vec{c}}\;\vec{a}.$
 - 1. Даны две вершины A(2; -3; -5), B(-1; 3; 2) параллелограмма ABCD и точка Q(4; -1; 7) пересечения его диагоналей. Найти остальные вершины параллелограмма. Найти длины его сторон l_1 , l_2 и диагоналей d_1 , d_2 . Проверить на данном примере moж decm o параллелограмма:

$$d_1^2 + d_2^2 = 2(l_1^2 + l_2^2).$$

Ответы

796. 1) -62; 2) 162; 3) 373. 800. $-\frac{3}{2}$. 801. -13. 759. $\vec{a} = \{1; -1; \sqrt{2}\}$ или $\vec{a} = \{1; -1; -\sqrt{2}\}$. 808. $\alpha = \arccos\frac{2}{\sqrt{7}}$. 812. 1) 22; 2) 6; 3) 7; 4) -200; 5) 129; 6) 41. 818. $\alpha = -6$. 824. $\vec{x} = \{1; \frac{1}{2}; -\frac{1}{2}\}$. 832. 6. 834. 5. 1. C(6; 1; 19), D(9; -5; 12); $l_1 = \sqrt{94}$, $l_2 = \sqrt{342}$, $d_1 = \sqrt{608}$, $d_2 = \sqrt{264}$.