Занятие 11–12 для групп Д1–01, Д1–02, Д1–03, Д1–04

Тема занятия: плоскости и прямые в пространстве

913. Составить уравнение плоскости, которая проходит через точку $M_1(2, 1, -1)$ и имеет нормальный вектор $\vec{n} = \{1; -2; 3\}.$

Ответ: x - 2y + 3z + 3 = 0.

<u>**917.**</u> Составить уравнение плоскости, проходящей через точку $M_1(3, 4, -5)$ параллельно векторам $\vec{a}_1 = \{3; 1; -1\}$ и $\vec{a}_2 = \{1; -2; 1\}$.

Ответ: x + 4y + 7z + 16 = 0.

921. Составить уравнение плоскости, проходящей через точки

$$M_1(3, -1, 2), M_2(4, -1, -1), M_3(2, 0, 2).$$

<u>Otbet:</u> 3x + 3y + z - 8 = 0.

<u>I.</u> При каких значениях α плоскости 3x+y-z+1=0 и $9x+3y+\alpha z+6=0$ являются **a)** параллельными? **б)** перпендикулярными?

<u>Ответ:</u> a) $\alpha = -3$; б) $\alpha = 30$.

 ${
m \underline{II.}}$ Вычислить расстояние от точки M до плоскости:

1)
$$M(1, 2, 3), 2x - y - 2z + 5 = 0;$$
 2) $M(3, -1, -1), x + y + z + 5 = 0.$

<u>Ответ:</u> 1) 1/3; 2) $2\sqrt{3}$.

III. Составить параметрические уравнения прямых, проходящих через точку $M_0(3, 2, 1)$ параллельно: 1) вектору $\vec{a} = \{2; -1; 5\};$ 2) прямой $\frac{x+4}{1} = \frac{y+5}{-1} = \frac{z+6}{0};$ 3) прямой x = 3t - 7, y = 2t + 3, z = -5t - 2.

Other: 1) x = 2t+3, y = -t+2, z = 5t+1; 2) x = t+3, y = -t+2, z = 1; 3) x = 3t+3, y = 2t+2, z = -5t+1.

1035. Составить уравнение движения точки M(x; y; z), которая, двигаясь прямолинейно и равномерно, прошла расстояние от точки $M_1(-7; 12; 5)$ до точки $M_2(9; -4; -3)$ за промежуток времени от $t_1 = 0$ до $t_2 = 4$.

<u>Ответ:</u> x = 4t - 7, y = -4t + 12, z = -2t + 5, $0 \le t \le 4$.

1011. Через точки $M_1(-6, 6, -5)$ и $M_2(12, -6, 1)$ проведена прямая. Найти точки пересечения этой прямой с координатными плоскостями.

<u>Otbet:</u> A(9, -4, 0), B(3, 0, -2), C(0, 2, -3).

1019. Составить каноническое уравнение прямой $l: \begin{cases} x-2y+3z-4=0, \\ 3x+2y-5z-4=0. \end{cases}$

<u>Ответ:</u> $\frac{x-2}{2} = \frac{y+1}{7} = \frac{z}{4}$. (Ответ может отличаться, если взять другую точку или другой направляющий вектор.)

 $\overline{\bf IV}$. Показать, что прямые l_1 : $x=2t-1,\ y=-t+2,\ z=-t+3$ и l_2 : $x=-t-1,\ y=2t+5,\ z=-t$ пересекаются. Найти точку пересечения.

<u>Ответ:</u> M(1, 1, 2) (при $t_1 = 1$ на l_1 и при $t_2 = -2$ на l_2).